Классификация устройств:

Для управления режимом работы первичного оборудования и контроля его состояния применяют специальные устройства, которые называют вторичным оборудованием, а схемы соединений этих устройств - схемами вторичных соединений. Вторичное оборудование – это аппаратура управления, сигнализации, реле автоматики, измерительные приборы.

Последние публикации в разделе:

Дифференциальная защита шин или ошиновки

Дифференциальная защита шин (далее - ДЗШ) или ошиновки (далее - ДЗО) являются быстродействующими защитами с абсолютной селективностью. Зона действия защиты ДЗШ (или ДЗО) ограничивается трансформаторами тока, к которым подключена защита. Токовые цепи ДЗШ (или ДЗО) всегда выполняются в трехфазном исполнении, а трансформаторы тока присоединений собираются по схеме полной звезды. Защита подключается к обмоткам трансформаторов тока таким образом, что бы ее зона действия максимально перекрывалась с зонами действия защит присоединений.

Обновлено: 25.03.2018 12:40

Общие сведения по устройствам релейной защиты

 

Силовое электрооборудование электростанций, подстанций и электрических сетей должно быть защищено от коротких замыканий и нарушений нормальных режимов устройствами релейной защиты в соответствии с требованиями правил технической эксплуатации электроустановок. Под устройствами релейной защиты понимается совокупность устройств, предназначенных для автоматического выявления коротких замыканий, замыканий на землю и других недопустимых режимов работы ЛЭП и оборудования, которые могут привести к их повреждению. Отключение поврежденных элементов и ликвидация недопустимых режимов работы ЛЭП и оборудования производится с помощью выключателей и других коммутационных аппаратов, подачи команд и (или) сигналов.

Функционально любое устройство релейной защиты состоит из следующих элементов: измерительные органы защиты (ИО), логическая часть (ЛЧ) и управляющие органы защиты (УО). Функциональная схема устройства релейной защиты представлена в следующем виде (см. рис.1).

Обновлено: 10.01.2018 21:09

Измерительные трансформаторы напряжения (электромагнитные). Погрешности измерительных трансформаторов напряжения.

 

Измерительный трансформатор напряжения (measuring voltage transformer) – это трансформатор, который предназначен для преобразования значения первичного напряжения во вторичное напряжение, которое используется для осуществления измерений в измерительных приборах, устройствах релейной защиты и автоматики.

Первичная обмотка измерительного трансформатора напряжения, имеющая очень большое число витков (несколько тысяч) тонкого провода, включается непосредственно в сеть высокого напряжения, а вторичная обмотка, имеющая меньшее количество витков (несколько сотен), подключаются параллельно к устройствам релейной защиты и автоматики, а также к измерительным приборам. Следует отметить, что вторичная обмотка трансформатора напряжения работает в режиме близком к холостому ходу.

В качестве нормированной величины номинального напряжения в первичной цепи принимаются следующие значения:

6 кВ; 10 кВ; 15 кВ; 20 кВ; 24 кВ; 27 кВ; 35 кВ;

110 кВ; 150 кВ; 220 кВ; 330 кВ; 500 кВ; 750 кВ; 1150 кВ;

В качестве нормированной величины номинального напряжения во вторичной цепи принимаются следующие значения:

100 В и 100/√3 В.

Обновлено: 11.05.2017 19:51

Измерительные трансформаторы тока (электромагнитные). Погрешности измерительных трансформаторов тока.

 

Измерительный трансформатор тока (measuring current transformer) – это трансформатор, который предназначен для преобразования значения первичного тока во вторичный ток,  который используется для осуществления измерений в измерительных приборах, устройствах релейной защиты и автоматики.

Трансформаторы тока устанавливаются на оборудование разного класса напряжений, поэтому основным параметром трансформатора тока является его номинальное напряжение. В качестве нормированной величины принимаются следующие значения  напряжений:

0,66 кВ; 6 кВ; 10 кВ; 15 кВ; 20 кВ; 24 кВ; 27 кВ; 35 кВ;

110 кВ; 150 кВ; 220 кВ; 330 кВ; 500 кВ; 750 кВ; 1150 кВ;

Первичная обмотка трансформатора тока включается последовательно в цепь с измеряемым переменным током, а во вторичную обмотку включаются измерительные приборы, устройств защиты и автоматики. Следует отметить, что вторичная обмотка трансформатора тока работает в режиме близком к короткому замыканию. Трансформаторы тока характеризуются максимально допустимыми значениями тока в первичной и вторичной обмотке трансформатора, при котором допустима его длительная работа (номинальные токи). В качестве нормированной величины номинального тока в первичной цепи принимаются следующие значения:

Обновлено: 11.05.2017 19:52

Силовые полупроводниковые приборы

Целью данного раздела приложения является предоставление основных сведений относительно полупроводниковых приборов, которые нашли применение в устройствах  FACTS. Большая часть изложенного ниже предназначена для инженеров энергосистем для понимания параметров и целесообразности применения полупроводниковых элементов в устройствах FACTS. О полупроводниковых приборах написано много книг, в которых можно найти более углубленную информацию.

Устройства FACTS представлены в диапазоне мощностей от десятков до сотен мегаватт.  В основном, устройства FACTS выполняется на базе системы преобразователей переменного тока в постоянный (и/или наоборот) и мощных коммутаторов переменного тока. В свою очередь, преобразователь выполняется на базе вентилей (с другим оборудованием), и каждый вентиль в свою очередь представляет собой силовые приборы с демпфирующими цепями и цепями управления включением и отключением. Аналогично, каждый коммутатор (ключ) переменного тока состоит из встречно включенных силовых приборов  с цепями демпфирования и управления. Номинальные параметры силовых приборов обычно лежат в диапазоне: 1-5 кА  и 5-10 кВ, однако реальное использование составляет от 25 до 50 % от их номинальных значений.  Это означает  что,  преобразователи и выключатели переменного тока состоят из большого количества силовых приборов. Преобразователи, выключатели переменного тока, и силовые приборы могут соединяться между собой последовательно или параллельно, в зависимости от мощности и назначения устройства FACTS; в некоторых случаях устройства FACTS  могут иметь однофазное исполнение. Изложенные соображения обеспечивают возможность проведения необходимых изменений на основе модульной конфигурации устройств, для эффективного использования силовых приборов в зависимости от заданных требований. Модульное исполнение устройств, используемое должным образом, приводит не только к уменьшению его стоимости из-за применения стандартных модулей и подмодулей, но также оказаться ценным качеством с точки зрения   надежности, избыточности и использования капиталовложений.

Свойства и характеристики приборов, и их эксплуатационные показатели существенно влияют на стоимость, исполнение, размер, вес, и величину потерь в устройствах FACTS, также как и в любых применениях силовых приборов. Таким образом, необходимо учитывать стоимость всех устройства, включая демпферные цепи,  цепи управления, трансформаторы и другое электромагнитное оборудование, фильтры, системы охлаждения, потери, исполнение и требования к техническому обслуживанию. Например, возможность быстрого переключения ведет к уменьшению компонентов демпферной цепи, снижению потерь в этих цепях, что, в свою очередь, обеспечивает меньшую генерацию гармоник и большее быстродействие устройств FACTS. Сказанное является особенно важным при использовании специальных устройств FACTS  в качестве активных фильтров.

В промышленных сетях малой мощности нашли применение разнообразные усовершенствованные схемы, которые внедрялись в основном из-за низкой себестоимости;  экономическая целесообразность применения аналогичных устройств в сетях большой мощности в значительной степени является функцией улучшения характеристик устройств. К этим усовершенствованиям относятся широтно-импульсная модуляция  (PWM), «мягкое» включение, резонансные преобразователи, прерыватели и другие. Отметим, что в конструкции FACTS обычно применяется устройства с наилучшими характеристиками, несмотря на их более высокую стоимость. Хотя стоимость является существенным фактором, было бы более корректно сказать, что применение устройств с наилучшими характеристиками  влияет на параметры FACTS и обеспечивает их конкурентоспособность, обеспечивая тем самым специфические технические возможности, которые получаются  по наименьшей возможной цене. Таким образом, стоимость, эксплуатационные качества, и рыночный успех устройств FACTS сильно зависит от развития полупроводниковых приборов и их технического исполнения. Фактически проектировщики устройств FACTS, могут выиграть очень многое  за счет обсуждения с поставщиками оборудования наивысших требований к характеристикам приборов, их технического исполнения и комплектующих, не допуская при этом применения устаревшей аппаратуры в конструкциях FACTS.  Для использования технологий FACTS важно наличие общей идеи относительно параметров полупроводниковых приборов, их технологии и будущей тенденции, а также принципиальные схемы, используемые в энергетике и промышленности.

Таким образом, силовые электронные приборы –  это быстродействующие устройства, выполненные  на базе однокристальной силиконовой пластины высокой чистоты, разработанные для различных коммутационных  операций. Приборы могут быть управляемыми как на включение так  и на выключение протекающего электрического тока,  посредством подачи импульсов на  управляющие электроды, называемые затворами. Некоторые полупроводниковые устройства разработаны без возможности запирания, т.е. блокирования протекания тока в обратном направлении, в этом случае данное свойство обеспечивается другим блокирующим прибором (диодом), включенным последовательно или встречно - параллельно.

В основном,  силовые полупроводниковые приборы  включают диоды, транзисторы и тиристоры. Условные обозначения основных устройств, относящихся к этим категориям, представлены на Рис.1. В последующих параграфах изложено краткое описание этих трех категорий и далее  несколько подробнее рассмотрены некоторые специальные устройства.

 

Диоды. Диоды - это группа двухслойных устройств с односторонней проводимостью. Направление проводимости в диодах имеет место от анода к катоду (в прямом направлении), когда анод имеет положительную полярность относительно катода.  В данных устройствах не предусмотрена возможность управления проводимостью в прямом направлении. Однако существует возможность запирания диода  в обратном  направлении, при положительной полярности напряжения катода относительно анода. Диод является важным элементом в нескольких устройствах  FACTS .

 

Транзисторы. Транзисторы -  это группа трехслойных устройств. Транзистор переходит в состояние проводимости в прямом направлении, когда на одном из его электродов, называемым коллектором, появляется положительное напряжение относительно другого электрода, называемого эмиттером, при условии подачи на третий электрод, называемым базой, включающего сигнала тока или напряжения.  В случае, если подаваемый на базу сигнал тока или напряжения меньше необходимого для полного включения устройства, в устройстве будет протекать ток до тех пор, пока будет приложено напряжение к аноду относительно катода. Транзисторы нашли широкое применение в системах малой и средней мощности. Один из транзисторов, известный как биполярный транзистор с изолированным затвором (IGBT, раздел 11) был специально разработан для широкого применения в установках средней и большой мощности, от нескольких МВт до нескольких десятков МВт. Таким образом,  IGBT является достаточно важным элементом для устройств  FACTS. Метало-оксидный полевой транзисторMOS (MOSFET) является другим типом транзистора, который  используется только в системах низкого напряжения, но для которого характерна возможность очень быстрого  включения и выключения, а так же данный тип транзистора часто используется  как  усилительное  устройство затвора мощных тиристоров.

 

Рис. 1. Полупроводниковые приборы: (a) диод, (b) транзистор, (c) интегрированный биполярный транзистор с затвором (IGBT ), (d) полевой транзистор MOS (MOSFET), (e) тиристор, (f) тиристор с возможностью управления моментом выключения (GTO)  и тиристор с управляемым затвором (GCT), (g) тиристор MOS с возможностью управления моментом выключения (MTO), (h) тиристор с управляемым эмиттером (ETO) , (i) управляемый тиристор MOS (MTO).

Тиристоры.  Тиристоры (раздел 6) - это семейство четырехслойных приборов. Тиристор переходит  в состояние полной проводимости в прямом направлении (отпирается), когда на одном из его электродов (аноде) появляется положительное напряжение относительно другого электрода (катода), при условии подачи на третий электрод, называемым затвором, включающего сигнала (импульса) тока или напряжения. Проводимость отпирания является необходимой для обеспечения низких потерь в проводящем состоянии, что будет объяснено в разделе 6. Конструкция некоторых тиристоров не предусматривает наличие затвора, управляющего выключением устройства,  в этом случае тиристор переходит из проводящего в непроводящее состояние только в случае, когда обеспечивается прохождение тока через нуль какими-либо другими средствами. В некоторых других тиристорах конструкцией предусмотрено наличие управляющих затворов обеспечивающих включение и выключение тиристора. Тиристор может быть разработан с возможностью запирания в прямом и обратном направлениях (симметричное устройство) или только в прямом направлении  (асимметричное устройство). Тиристоры являются наиболее важными приборами для устройств FACTS .

По сравнению с тиристорами, транзисторы имеют лучшие эксплуатационные характеристики, а именно более быстрое срабатывание и меньшие потери при коммутации.  С другой стороны, тиристоры характеризуются меньшей величиной потерь в проводящем состоянии  и более высокой допустимой величиной мощности, чем транзисторы.  Однако, непрерывно предпринимаются попытки разработать устройства с  улучшенными характеристиками, а именно с пониженными коммутационными и постоянными потерями при одновременном увеличения мощности приборов.

 

1.1. Основные типы  силовых тиристоров

 

Формально, термины «тиристор» и «кремниевый управляемый выпрямитель» относятся к основной группе управляемых четырехслойных полупроводниковых приборов, в которых включение и выключение зависит от взаимодействий  и положительной обратной связи в структуре p-n-p-n (более детально описано далее в разделе 6). Название «управляемый кремниевый выпрямитель» (SCR)  было предложено изобретателями и первыми производителями  компании Дженерал Электрик  (GE). В соответствии со свойствами прибора, в котором предусмотрена возможность включения, но не  выключения,  термин SCR позднее был заменен на термин «тиристор».  С появлением устройства с возможностью включения и выключения, названноготиристор с возможностью управления моментом выключения, названным GTO-тиристор, прибор с возможностью только включения стали называть  «обычным тиристором» или просто «тиристором».  Остальным приборам, относящимся к тиристорам  или SCR, были даны другие названия, согласно их аббревиатуре. В данной работе использование термина тиристор подразумевает обычный  тиристор.

Когда отпирающий импульс тока распространяется с затвора на катод, обеспечивается быстрый переход тиристора в состояние полной проводимости в прямом направлении с низким падение напряжения (от 1,5 до 3 В, в зависимости от типа тиристора и тока).  Как упоминалось выше, обычный тиристор не может уменьшать свой ток до нуля; напротив, моментуменьшения величины тока до нуля определяется свойствами внешней цепи. Когда ток цепи становиться равным нулю, тиристор в течение нескольких десятков микросекунд действия обратного запирающего напряжения восстанавливает свои изолирующие свойства, после чего  до следующего импульса включения тиристор находится в непроводящем состоянии.

 Из-за низкой стоимости, высокой эффективности, надежности, большого ресурса, возможности использования на большие токи и напряжения, обычные тиристоры повсеместно используются в случае, когда конфигурация цепи и ее технико-экономические требования позволяют использовать приборы без возможности управления моментом их выключения. Зачастую возможность управления моментом выключения не предоставляет каких-либо существенных преимуществ, а только лишь приводит к увеличению стоимости и потерь в приборах. Обычные тиристоры используются почти во всех проектах ППТ, а также  некоторых устройствах FACTS, но их наибольшее их процентное содержание  приходиться на промышленные установки. Их часто называют основным элементом энергетической электроники.

Существует несколько конструкций тиристоров с возможностью управления выключением; ниже приведены основные из них и используемые в технологии FACTS:

  • Тиристор с возможностью управления моментом выключения (раздел 7), изобретенный в фирме Дженерал Электрик (GE), будем далее называть как GTO-тиристор или просто GTO. Подобно обычному тиристору, GTO переходит в полностью проводящее состояние в прямом направлении с низким падением напряжения, когда включающий импульс тока подается на его затвор относительно катода. Подобно обычному тиристору, GTO выключается, когда естественным образом ток становиться равным нулю, но в GTO предусмотрена также возможность управления моментом выключения посредствам подачи выключающего импульса на его затвор в обратном направлении.  При соответствующих параметрах импульса, GTO быстро выключается и быстро восстанавливает изолирующие свойства, сдерживающее прямое напряжение, таким образом, что прибор готов к следующему импульсу включения. Тиристоры  GTO  широко используются в устройствах FACTS; однако, из-за их мощных цепей формирования запирающих импульсов,  медленного выключения, дорогостоящих демпфирующих цепей, вероятно, что  через несколько лет они будут заменены усовершенствованными GTO и тиристорами. Эти усовершенствованные отключаемые приборы, которые в свою очередь относятся к классу тиристоров, имеют собственную аббревиатуру  и будут более детально описаны далее в этом разделе.
  • Тиристор MOS с возможностью управления моментом выключения (MTO, раздел 8), изобретенный Харшадом Мехта (Harshad Mehta) в Корпорации высоковольтных кремниевых устройств (SPCO), выполненный на базе транзисторов для достижения быстрого выключения с маленькими коммутационными потерями. Коммерческое использование данного устройства началось недавно и имеет хороший потенциал для использования в промышленных установках средней и большой мощности, и устройствах FACTS.
  • Тиристор с управляемым эмиттером (ETO, раздел 9), разработанный в Центре высоковольтной электроники в Вирджинии при сотрудничестве с SPCO, является другой разновидностью GTO, и состоит из последовательно включенных транзисторов низкого напряжения с высоковольтными GTO, для обеспечения необходимого быстрого выключения и низких коммутационных потерь.
  • Интегрированный тиристор с коммутируемым затвором  (GCT и IGCT, раздел 10), разработан компаниями Мицубиси и  ABB, выполнен на базе GTO с  жестким выключением,который в комбинации с другими устройствами, достигает быстрого  выключения и низких коммутационных потерь отключения. Данный прибор также недавно было введено в эксплуатацию и имеет потенциал для широкого применения в промышленных системах и FACTS.
  • Управляемый тиристор МОS (MCT, раздел 12), был изобретен Виктором Темпле, сотрудником GE, является основным  прибором, относящимся к тиристорам, которое выполнено на базе интегрированной МОS структуры с возможностью быстрого включения и выключения. Наряду с очень маленькими коммутационными потерями прибор также характеризуется низкими потерями проводимости. Данные приборы предназначены для применения в маломощных системах, но имеют хорошие перспективы для использования в FACTS.

 

В данном разделе, учитывая важность устройств FACTS,  кратко описаны такие полупроводниковые приборы как диод, транзистор, МОSFET, тиристор, GTO, MTO, ETO, IGCT, IGBTи MCT.

 

 

2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОЩНЫХ ПРИБОРОВ И ТРЕБОВАНИЯ К  НИМ

 

2.1 Номинальные напряжение и ток

 

Основным элементом приборов большой мощности обычно является тонкая одно-кристаллических  кремниевая пластина диаметром 75-125 мм, а иногда и 150 мм в диаметре. Прибор на базе пластины одного и того же диаметра может выполняться на высокое напряжение и маленький ток, или наоборот.

Потенциально, кремниевый кристалл имеет очень высокую пробивную прочность 200 кВ/см, а величина его удельного сопротивления находиться между значениями характерными для металла и диэлектрика. Добавление примесей позволяет изменить характеристики проводимости элемента. С добавлением примесей, увеличивается число носителей зарядов, и в результате этого допустимое значения напряжения уменьшается, а величина тока увеличивается. Меньшее количество присадок обеспечивает более высокое допустимое напряжение, но способствуют увеличению потерь напряжения и уменьшению допустимого тока. В некоторой степени допустимый ток и напряжение являются взаимозаменяющими величинами, как упоминалось выше. Больший диаметр пластины, естественно, обеспечивает более высокий допустимый ток. Прибор диаметром 125 мм может иметь допустимый ток 3000-4000 А, а напряжение может изменяться в диапазоне 6000-10000 В.  Так как данный отчет посвящен другим вопросом, в нем не будут излагаться детальные объяснения, а будут отмечены лишь важные параметры различных приборов.

Использование приборов с более высокими номинальными параметрами позволяет уменьшить их суммарное количество и  количество других компонентов, что приводит к уменьшению себестоимости устройства в целом. Наибольшие значения обратного напряжения,  наряду с другими желательными характеристиками, обеспечивается следующими устройствами: тиристорами - 8-10 кВ, GTO -  5-8 кВ,  IGBT -  3-5 кВ.  После определения возможных перенапряжений и необходимых запасов, напряжение, на которое включается прибор, выбирается приблизительно равным половине обратного напряжения. Зачастую необходимо последовательное соединение приборов для создания  высоковольтных вентилей. Одинаковое распределение напряжения в момент включения, выключения, и динамические изменения напряжения являются главными показателями для проектировщиков вентилей при  выборе необходимого прибора из ряда приборов с различными характеристиками. Одним из таких показателей является соответствие приборов, особенно их коммутационных  характеристик.

Мощные силовые приборы могут быть разработаны на токи нагрузки порядка несколько тысяч ампер, таким образом, параллельное соединение приборов не является необходимым. Однако, так как часто ток режима короткого замыкания, определяет требуемую пропускную способность устройства, согласованное параллельное соединение двух  приборов на один и тот же  теплоотвод является хороший решением. Обычно требуется переход в запертое состояние после протекания тока замыкания в течение одного периода в контуре, в котором установлен прибор. В то время как в обычной практике в промышленной электронике используются  плавкие предохранители, их применение нежелательно в таких высоковольтных устройствах какFACTS. При выборе прибора необходимо учитывать все возможные неисправности и действия  защиты, для определения допустимого тока и напряжения, также как необходимых запасов (избыточности). Приборы, относящиеся к группе тиристоров, выдерживают кратковременную перегрузку по току  и большой ток замыкания в течение одного периода без каких-либо повреждений. В поврежденном состоянии тиристор или диод представляют собой короткозамкнутые элементы с малыми потерями напряжения, таким образом, остальная цепь может находиться в дальнейшей эксплуатации при выполнении  функций оставшимися устройствами.

В соответствии с рыночными требованиями, предъявляемым к преобразователям (которые подробно описаны в разделе П3: преобразователи, выполненные на базе источника напряжения), большинство устройств, выполняемых с возможностью управления моментом выключения, не обладают  возможностью запирания в обратном направлении. Данные устройства упоминались как асимметричные устройства с возможностью выключения, которые часто называют просто устройства с возможностью выключения. Устройства, в которых не предусмотрена возможность запирания обратного напряжения,  в техническом исполнении являются  менее массивными, имеют меньшие коммутационные и постоянные потери. И наоборот, более высокое допустимое напряжение в направлении проводимости  может быть получено при использовании асимметричных устройств.  Оказалось, что в преобразователях, выполненных на базе источника напряжения, требуется установка встречно-параллельно диода, подключенного к каждому основному прибору. В данном случае применяются специальные диоды с маленьким обратным током утечки для обеспечения  необходимых требований для включения  основных приборов.

Однако, в  преобразователях, которые будут подробно описаны в разделе П4, выполненных на базе источника тока, требуются приборы с возможностью запирания обратного напряжения. Однако, из-за большого объема асимметричных силовых установок и с учетом их себестоимости, в промышленных установках используют последовательное соединение диодов  с асимметричным главным прибором, для получения возможности запирания.

 

2.2 Коммутационные потери и скорость коммутации

 

Полупроводниковые приборы, кроме допустимого напряжения и тока, имеет и другие  характеристики. Наиболее важными среди них являются:

  • Падение напряжение в прямом направлении и потери в состояние полной проводимости (постоянные потери). Т.к. потери вызывают нагрев кристаллических пластин, необходим быстрый отвод тепла от всего прибора, а  наличие системы охлаждения приводит к существенному удорожанию устройства.   
  • Скорость коммутации. Переход из состояния полной проводимости в непроводящее состояние (выключение) сопровождается высоким значением  dv/dt  сразу после выключения, а переход из полностью непроводящего состояния к проводящему (включение) сопровождается высоким значением di/dt, данное отношение является так же важной величиной и при выключении. Значение величин di/dt и   dv/dt определяют размер, стоимость, и потери в демпфирующих цепях, которые необходимы, чтобы  уменьшать эти показатели,  возможность применения последовательного соединения приборов, а также   значения номинального тока и напряжения прибора.
  • Коммутационные потери. При включении устройства  происходит увеличение тока в прямом направлении; в течение процесса выключения GTO-приборов наблюдается повышение прямого напряжения до момента уменьшения тока. Одновременное существование значительного напряжения и тока в приборе обусловливает потери мощности. Так как данные потери носят повторяющийся характер, они составляют существенную часть суммарных потерь и часто превосходят постоянные потери проводимости. В конструкции полупроводниковых приборов предусмотрена возможность компромиссного  изменения соотношения между коммутационными и постоянными потерями, это в свою очередь означает, что оптимизированная конструкция устройства является функцией топологии цепи, в которой оно установлено. Даже если номинальная частота сети составляет 50 или 60 Гц, как будет позже отмечено в разделах П3 и П4, преобразователи с «широтно-импульсной модуляцией  (PWM)» для применения в мощных силовых устройствах имеют высокую внутреннюю частоту порядка несколько сотен Гц, и даже несколько кГц. Многократная коммутация приводит к тому, что коммутационные потери могут стать преобладающими в суммарных потерях в PWM преобразователях.
  • Мощность, необходимую для  затвора и количество потребляемой энергии определяют важную часть потерь и полную стоимость оборудования. При большом и длительном импульсе тока, необходимом для включения и выключения прибора, существенной являются не только величина этих потерь относительно суммарных, но и стоимость устройства формирования импульса и цепей питания может быть выше, чем стоимость самого прибора. Размер всех дополнительных компонентов силовой установки увеличивает ее паразитную индуктивность и емкость, которые в свою очередь вызывают ухудшение характеристик приборов, а именно время коммутации и потери в демпфирующих цепях.  Учитывая важную роль взаимодействия между прибором, контуром управления  и модулем в целом, в будущем основным направлением будет покупка у поставщика прибора и цепей управления как одного единого модуля.

 

Величине потерь необходимо уделять особое внимание по следующим двум причинам:

  • Очевидно, что потери приводят к излишним затратам потребителя. В независимости от типа потребителя (промышленный или непромышленный), их потери неизменно определяются на основании оценки полной длительности работы, т.е. величина потерь может быть оценена от 1000$ до 5000$ за  кВт потерь для определения стоимости устройства.  Например, если 1 кВт устройства FACTS стоит 100$  и его потери составляют 2 % (т.е. для каждого 1 кВт потери составляют 0,02 кВт), таким образом, при соответствующей удельной стоимости потерь 2000$ за 1кВт, стоимости потерь будет равна 40$ за 1 кВт, т.е. непосредственно 40 % стоимости преобразователя. Поэтому коэффициент полезного действия для устройстваFACTS мощностью несколько сотен МВт должен быть больше, чем 98 %, и потери в вентилях преобразователя должны быть меньше чем 1 %.
  • Так как потери вызывают нагрев устройства, необходимо его эффективное охлаждение, т.е. передачу тепла от  кристалла на наружную поверхность высоковольтного герметичного изоляционного устройства к внешнему хладагенту. По этой причине, обеспечение  необходимой конструкцию и охлаждения прибора является достаточно трудной задачей, т.к. необходимо гарантировать, чтобы температура кристаллов не превышала допустимый эксплуатационный уровень, который  составляет около .  Необходимо также гарантировать, чтобы прибор работал с безопасными коммутационными характеристиками и обладал достаточным запасом для перегрузки и токов замыкания. Зачастую, величина тока короткого замыкания определяет характеристики нормальной работы прибора. Большие потери в устройстве означают увеличение его стоимости, влияние на которую оказывают также тепловые потери при водяном или воздушном охлаждение, размер и вес установки в целом.

 

2.3 Компромиссные решения  при выборе параметров приборов

Стоимость приборов зависит от доли  качественной продукции в общем объеме произведенных приборов, которые затем разделяются на группы по разным параметрам. Это требует постоянного контроля качества продукции  на всех этапах производства приборов:  от исходного материала до готового изделия, включая необходимое качество электроснабжения на предприятии. Все силовые приборы для мощных устройств  FACTS проходят индивидуальное тестирование, так же как и приборы, используемые в преобразователях  ППТ, при этом ведется статистика и архивирование их результатов для будущего сервисного обслуживания.

Кроме компромиссных величин допустимых напряжений и токов, другими взаимосвязанными и допускающими компромиссный подход параметрами являются:

  • Мощность, необходимая для затвора
  • величина di/dt
  • величина  dv/dt
  • время включения и выключения
  • включающая и   отключающая способность (так называемая область безопасной работы – SOA, Safety Operating Area)
  • стабильность характеристик
  • качество исходных кремниевых кристаллов
  • экологическая безопасность при производстве приборов, и т.д.

 

Отметим, что разработка новых конструкций и методов непрерывно продолжается. Учитывая большой ассортимент,  изготовитель проводит анализ потребностей рынка и разделяет его на области применения того или иного прибора. Также  у изготовителей зачастую используются практика выпуска специальных устройств для индивидуальных больших заказчиков и проектов, таких как FACTS и ППТ.

Полупроводниковые приборы часто характеризуют скоростью коммутации, коммутационными потерями, размером и стоимостью демпфирующих цепей и связанными с ними потерями, что в значительной степени обусловлено продажей прибора отдельно от устройств и цепей управления и демпфирующих цепей. В ходе обсуждения изложенного в данном разделе материала станет ясно, что работа прибора связана с  цепями, управляющими затвором, демпферными цепочками и конструкцией шин для соединения отдельных модулей  в комплектный преобразователь, в соответствии с указанным порядком их очередности. Если приборы, цепи управления, демпфирующие цепочки, будут близко расположены от сборных шин, то есть если сборка и продажа оборудования будет осуществлена в виде единого блока, это позволит значительно уменьшить стоимость оборудования. Фактически электрическое и механическое объединение собственно полупроводниковой пластины и ее цепей управления, обеспечивает значительные преимущества применения. Для промышленных установок малой  и средней мощности, существует распространенная практика поставки нескольких собранных приборов в виде блока или модуля, которые составляют полную схему или ее часть. Данная практика позволяет уменьшить стоимости сборки, исключая необходимость обслуживания объединения нескольких элементов, начиная с кристаллического устройства и цепей управления. Именно с этим намерением, американское научно-исследовательское управление ВМС (ONR, Office of Naval Research) выработало программу для электронного оборудования, названную «Модульное построение силовых электронных устройств (PEBB)», посвященную всем аспектам взаимодействия, включая собственно прибор,  цепи  управления, сборку,  шины, что позволило уменьшить полную стоимость преобразовательной установки, потери, весовые показатели и размеры. Эта основное направление развития  привело к значительным успехам, которые повсеместно признаются. Поставка устройств осуществляется с заранее установленными  цепями управления  и демпфирующими цепями от различных производителей, необязательно со ссылкой на PEBB.

 

3. Материалы полупроводниковых приборов

 

Полупроводниковые приборы выполняются на базе одно-кристаллических кремниевых пластин  высокой чистоты. Монокристаллы длиной несколько метров и требуемым диаметром (до 150 мм) выращиваются в так называемой зоне плавания в специальных печах. Затем этот огромный кристалл разрезается на тонкие пластины, которые используют в  силовых установках после многоступенчатого технологического процесса.

Чистые атомы кремния имею по четыре электрона для  связи с соседними атомами в узлах кристаллической решетки. Данных материал характеризуется высоким удельным сопротивлением (диэлектрик) и очень высокой электрической прочностью (более чем 200 кВ/см). Его удельное сопротивление и количество носителей заряда могут быть изменены, посредствам изменения в различных слоях  пластины путем введения определенных примесей (присадок). Применяя различные примеси, уровни и формы их добавления, наряду с применением высоких технологий  фотолитографии, лазерной резки, травления, изоляции и сборки,  выпускают мощные приборы с заданными характеристиками.

Добавляемые в пластины кристалла кремния примеси разделяют на доноры и акцепторы. Например, фосфор является донором, так как его атом имеет пять электронов, в то время как кремний четыре. При внедрении атома фосфора в кремний, он занимает место в узле кристаллической решетки с одним дополнительным электроном. Этот дополнительный электрон может быть легко смещен  электрическим полем.  Когда электрон смещается от  атома фосфора, это приводит к образованию на его месте положительно заряда (называемого дыркой), которое ожидает заполнения каким либо другим электроном, на месте которого в свою очередь также образуется дырка. Таким образом, при приложении электрического поля, начинается движение электронов и дырок в направлении проводимости. Фосфор называется  n примесью, т.к. данный элемент увеличивает число отрицательно заряженных частиц (электронов), участвующих в процессе проводимости. Когда добавление фосфора в кремний  незначительно, его обозначают как n- примесь, а когда количество добавленного фосфора значительно, то, как n+ примесь.

Другой добавляемой примесью является бор, который выполняет функции  противоположные фосфору. Данный элемент имеет три электрона в атоме, таким образом, при внедрении атом бора в кремниевую кристаллическую решетку, образуется дырка, которая может быть заполнена движущимся электроном. В случае, когда место заполнено атомом бора, это приводит к образованию отрицательного заряда в этой точке кристаллической решетки, ожидающему нейтрализации дыркой из другой точки решетки, которая в свою очередь приобретает отрицательный заряд, таким образом, образуется возможность перемещения дырок. Добавку бора называют p примесью, т.к. он увеличивает количество положительных дырок, участвующих в процессе.   При небольшом добавлении р элемента в кремний используется обозначение p- при значительном - p+ .

Таким образом, перенос заряда при приложении электрического поля, обеспечивается свободными электронами в кремнии с n примесями, и дырками в кремнии с p примесями.

Дырки в  кремнии с p примесями называются основными носителями заряда, а электроны в этом случае называются неосновными носителями. В кремнии с n примесями, наоборот, электроны являются основными носителями, а дырки  - неосновными.

 В дополнение к носителям заряда, наличие которых обеспечено введенным примесями в материал прибора, существует так называемая внутренняя проводимость, которая обусловлена одинаковым количеством электронов и дырок, появляющихся под действием температурного возбуждения. Проводимость данного вида имеет место непрерывно, при этом происходит рекомбинация носителей заряда в соответствии с их временем жизни, таким образом, обеспечивается необходимое равновесие плотности носителей заряда порядка  в диапазоне от 0°С до 100°С.

Для достижения большой величины запирающего напряжения, требуется небольшое количество примесей (меньшее количество носителей заряда), что приводит к тому, что процесс переноса заряда в большей степени обусловлен внутренней проводимостью. Так как внутренняя проводимости являются функцией температуры, ее составляющая становиться существенной и даже основной при протекании больших токов.

 В качестве исходного материала для мощных высоковольтных полупроводниковых приборов используются кремниевые пластины, облученные нейтронами в реакторе. В зависимости от степени облучения, изменяется количество кремниевых атомов, преобразованных в атомы фосфора, таким образом, обеспечивается добавление n примеси в кремний, но с  низкой и однородной концентрацией, порядка , что сопоставимо с концентрацией внутренних носителей. При диффузии в высокотемпературных печах и других процессах, в тонкой пластине с низким уровнем n примесей происходят изменения за счет многократного добавления примесей слоями, каналами и т.д., что необходимо  для определенных устройств. Технологические процессы легирования являются предметом специальных дисциплин и  не рассматривается в отчете.

 

4.  ДИОД -n-переход)

 

Условное обозначение диода показано на Рис.2(а), а на Рис. 2(b) представлен  поперечный разрез его структуры, состоящей из нескольких слоев. Повсеместное использование диодов в устройствах FACTS объясняется их следующими свойствами:      

                  

  1. Диодный преобразователь может использоваться как простое, дешевое и эффективное устройство для  преобразования  активной мощности в установках FACTS.
  2. Диод включается встречно – параллельно с каждым отключаемым тиристором  в преобразователях, выполненных на базе источника напряжения, а также для связи промежуточных уровней многоуровневых преобразователей напряжения (рассматриваемых в разделе П3).
  3. Включение диода может осуществляться последовательно с каждым отключаемым тиристором для блокирования обратного напряжения (раздел П4).
  4. Диоды могут использоваться в управляющих и демпфирующих цепях.

 

C уверенностью можно сказать, что почти половина приборов, используемых в устройствах FACTS,  являются диодами.

Диодом называется прибор с одиночным соединением p и n слоев кремниевой пластины (Рис.2 (b)).

 Слой р характеризуется дефицитом электронов (в качестве основных носителей заряда в этом случае выступают дырки), и, аналогично, в n слое наблюдается их избыток, и в этом слое электроны являются основными носителями. Как ранее упоминалось, эти p и n слои получены путем добавления примесей в кремниевый слой.  При приложении напряжения к диоду, которое обеспечивает отрицательную полярности р слое и положительную полярности n, происходит генерация носителей электрического заряда, которые участвуют в процессе проводимости, таким образом объясняется процесс  односторонней проводимости через рn переход (диод). Под действием внешней силы осуществляется движение дырок из p слоя в n слой через их  соединение и  электронов из р слоя в n. Однако, если к диоду приложить напряжение обратной полярности, то происходит движение дырок и электронов от поверхности соединения р и n слоев, таким образом, создается внутреннее встречное поле, которое препятствует протеканию тока. Более подробное объяснение принципа действия диода необходимо для лучшего понимания процессов, происходящих в устройствах, состоящих из нескольких рn переходов.

Движение электронов и дырок обусловлено двумя физическими процессами:

  1. Диффузией, вызванной различной концентрацией носителей заряда
  2. Упорядоченным движением, вызванным приложением внешнего напряжения

Без приложения внешнего напряжения, pn переход  обладает очень маленьким электрическим полем (меньше, чем 1 В). Создание этого поля обусловлено диффузией небольшого числа дырок из p слоя в n и электронов из n слоя в p. На границе раздела, с обоих ее сторон, формируется пространственный заряд, который создает электрическое поле, направление которого препятствует созданию вакантных мест для электронов  и дырок, участвующих в процессе диффузии. Это маленькое электрическое поле характеризуется положительной полярностью на рслое и  отрицательной на n слое. Когда анод имеет положительную полярность относительно катода, осуществляется движение электронов от n к p  и дырок от p к n слою.  Как только происходит преодоление барьера, созданного малым электрическим полем, обусловленным диффузией носителей с напряжением меньше чем 1В, в элементе осуществляется протекание большого тока, вызванного упорядоченным движением зарядов  под действием положительного задающего напряжения. Падение напряжения будет увеличиваться с увеличением тока, величина которого определяется сопротивлением кремния, и составляет примерно 1,5-3,0 В при номинальном токе.

В случае, когда катод приобретает положительную полярность относительно анода, происходит отток электронов от границы раздела в n слое, и дырок от границы в p слое. Таким образом, создается сильное электрическое поле около границы раздела слоев, которое характеризуется положительной полярностью на катоде и отрицательной на аноде, противодействующее внешнему полю, то есть, в диоде (идеальном) отсутствуют какие-либо механизмы переноса заряда.

Область формирования электрического поля на границе раздела слоев получила название, область обеднения (истощения).  При более высоком добавлении примесей, поле является более интенсивным и поэтому область обеднения (истощения) является более тонкой  и наоборот. В пределах области истощения, максимальное значение поля наблюдается в области соединения двух слоев. При увеличении обратного напряжения, область истощения будет увеличиваться, по существу, на стороне  n-, и диод может пробиться, если обратное напряжение будет достаточно велико для увеличения обедненного слоя до полной ширины n- области.

В состоянии проводимости, когда дырки пересекают границу раздела и входят в  n слой, они становятся неосновными носителями заряда. Точно так же, как и электроны, переходя из nв p область, становятся неосновными носителями. Таким образом, прибор является устройством, базирующемся на неосновных носителях заряда, поскольку носители заряда, обусловленные добавлением примесей,  преобладают в осуществлении проводимости.

В мощных диодах n-типа (Рис. 2 (c)), в слой p  вводиться большое количество примесей (p+),  что приводит к очень узкой обедненной области на  стороне p+, а в слой n около  границы раздела вводиться небольшое количество примесей (n-), что приводит к широкой области обеднения на сторонt n-. Когда к диоду прикладывается обратное напряжение (т.е. катод имеет положительную полярность относительно анода), на стороне n- происходит большее расширение, чем на p стороне. Поэтому сторона n- становиться более широкой и удерживает почти все обратное напряжение. Следовательно,  в слой n- необходимо вводить небольшое количество примесей, так как внутренние носители заряда будут составлять значительную часть носителей n- слоя. Увеличение толщины прибора выполнено с целью увеличения возможного обратного напряжения прибора в соответствии с расширенным обедненным слоем. Увеличение толщины, в свою очередь, увеличит сопротивление прибора  и постоянные потери проводимости. Слой n-  называют областью проводимости, так как кроме фактического обедненного уровня, соответствующего приложенному обратному напряжению, процесс переноса заряда осуществляется с помощью диффузии, обусловленной тепловым движением, небольшого количества носителей через n-  слой большой толщины. Почти все кремниевые диоды  разработаны с максимально возможной шириной n области.

В диодах большой мощности, также осуществляется добавление большого количества примесей в n слой (n+) на достаточном расстоянии от р-n перехода, к которому осуществляется подключение катода (Рис.2 (c)). Области p+ и n+ находящиеся по концам устройства, характеризуются большим количеством  примесных носителей заряда, для избежания расширения области обеднения при приложении обратного напряжения вплоть до металлического электрода. Другой важной функцией n+ слоя является то, что при достижении обедненного слоя границы  n+ слоя, напряженность вдоль n- слоя будет выравниваться и , таким образом, возможно приложении более высокого напряжения. Данный процесс называется операцией перфорации, он позволяет для тех же значений обратного напряжения уменьшить толщину n- слоя и, следовательно, уменьшить постоянные потери. Постоянные потери, также уменьшаются из-за возможности участия в процессе проводимости в прямом направлении носителей заряда из n+ слоя. Большое содержание примесей в n слое, находящемся рядом с анодным электродом, характерно и для ряда других устройства, описанных ниже.

Для диодов большой мощности, также как и для других энергетических кремниевых  силовых установок, края устройства специально обработаны (физически и путем добавления присадок) и изолированы, для предотвращения пробоев по краям. Это необходимо, так как уровень электрической прочности среды вблизи краев пластины намного ниже (порядка 1/10), чем  прочность полупроводниковых слоев прибора. В данном отчете не рассматриваются вопросы перехода от кремниевой  пластины к внешней среде (пассивация), так как они сами по себя являются достаточно сложными. Кожух устройства обеспечивает   герметичность и жесткость соединения кристаллических слоев и необходимую внешнюю изоляцию между анодом и катодом, а также хороший термический контакт между пластиной и внешней конструкцией прибора, для эффективного отвода тепла изнутри к внешней стороне. Обеспечение сборкиприбора, которая эффективно сочетает в себе  комбинацию электрических, тепловых и механических нагрузок, является главной проблемой для всех мощных электронных приборов.

Обычно, при практическом применении, когда ток в цепи становиться равным нулю, диодное напряжение скачкообразно принимает некоторое отрицательное значение. Данное изменение напряжения вызывает кратковременный (микросекунды или десятки микросекунд) ток в обратном направлении, что вызывает движение внутренних избыточных зарядов и восстановление обедненного слоя, соответствующему приложенному обратному напряжению. Этот обратный ток в диодах приводит  к увеличению тока, необходимого для включения отключаемых приборов в преобразователях, выполненных на базе источника  напряжения  (Раздел №7.1), что в свою очередь увеличивает потери включения этих приборов. Поэтому диоды, используемые в преобразователях, выполненных на базе источника напряжения, включаемые параллельно отключаемым приборам должны характеризоваться быстрой способностью отключения и маленьким накопленным зарядом. Для увеличения скорости срабатывания и уменьшения накопления заряда были разработаны усовершенствованные типы диодов с помощью специальной технологии добавления присадок. Улучшение характеристик  диодов с помощью уменьшения обратного тока в выключенном состоянии окажет существенное влияние на стоимость преобразователей, выполненных на базе источников напряжения.

 

Рис. 2. Диод: (a) условное обозначение, (b) и (c) структуры диодов.

 

5.  ТРАНЗИСТОР

Транзисторами называют группу трехслойных (с двумя p-n переходами) устройств. В данном разделе рассмотрены основные принципы работы транзисторов для лучшего понимания работы мощных устройств.

Эквивалентом транзистора является два встречно- включенных p-n диодных перехода. Существует два типа транзисторов:

  1. Pnp транзистор (Рис.3 (a, b)), который соответствует двум последовательно включенным переходам рn (диод) и np (обращенный диод), таким образом, что образуется прибор, состоящий из двух p слоев и  n слоя между ними. Анод (эмиттер) –  p слой выполняется  широким, слой n (база) – узким, а катод (коллектор) – p слой – узким с большим количеством примесей.
  2. Npn транзистор (Рис. 3 (c, d)), который соответствует двум расположенным друг над другом nр (обращенный диод) и рn (диод), таким образом, что образуется прибор, состоящий из двух n слоев и  р слоя между ними.

 

Рассмотрим принцип действия только npn транзистора, т.к. транзисторы большой мощности относятся именно к этому типу, один из внешних слоев n, выполненный с добавлением большого количества примесей (n+), называется эмиттером, другой n слой называется коллектором  и средний p слой называется базой. В случае, когда при включении внешнего задающего напряжения коллектор имеет положительную полярность относительно эмиттера, в устройстве отсутствуют  какие-либо электрические токи, так как происходит запирание прибора обедненным слоем, сформированным на границе np перехода на стороне коллектора. Это соединение сделано для возможности запирания высокого напряжения с низким добавлением примесей в p слое.  Таким образом, при возникновении другого небольшого внешнего напряжения, приложенного к базе (затвору), при ее положительной полярности относительно эмиттера, возникнет поток электронов от n+ эмиттера к базе p (ток от затвора к эмиттеру). При движении электронов от n+  эмиттера к базе, происходит также ускорение электронов электрическим полем обедненного слоя к коллектору; направления протекания токов через прибор показаны стрелками на Рис.3 (d).

Так как количество полученных электронов от n+ слоя является функцией тока базы, происходит ограничение (насыщение) электрического тока, значение которого определяется напряжением обедненного слоя. На Рис.4 показы характеристики проводимости устройства в прямом направлении, в виде зависимости тока устройства от напряжения при различных значениях тока базы. Ток базы определяет ток насыщения устройства. В нормальном режиме работы при больших токах базы, ток и падение напряжение в прямом направлении силовой установке будут ограничены  линией насыщения слева от кривых, таким образом, падение напряжения и, следовательно, потери будут маленькими. Но если ток базы ограничен,  часть падения напряжения будет приходиться на само устройство, и его ток будет ограничен линией насыщения для соответствующего тока базы. Эта особенность используется в преобразователях малой мощности для ограничения тока при внешней аварии, после чего осуществляется быстрое выключение прибора безопасным способом.

Необходимо отметить, что в силовых приборах пластина выполняется с большим числом параллельных элементов базы, пронизывающих верхний слой, и в действительности мощный транзистор может состоять из большого количества параллельно соединенных устройств небольшой мощности.

Из-за относительно низкого коэффициента усиления (отношения тока базы к току прибора), устройства выполняются с каскадным усилением, как показано на Рис.5. Такие транзисторы получили название транзисторы Дарлингтона.

Рис. 3. Транзистор: (а)условное обозначение, (p-n-p), (b)p-n-p структура, (c) условное обозначение(n-p-n), (d) n-p-n структура.

Рис. 4. Вольтамперная характеристика транзистора для разных значений тока базы.

Рис. 5. Транзистор с каскадным усилением.

 

Существует много конструкций (типов) транзисторов. Транзистор, характеризующийся большой скоростью коммутации  и низкими коммутационными потерями получил название полевой транзистор со структурой металл-оксид-полупроводник (МОSFET), в котором управление затвором осуществляется в большей степени электрическим полем (напряжением), чем током.  Это обеспечивается емкостной связью между затвором и прибором. На Рис.6 показана структура и эквивалентная схема данного типа транзистора. Транзисторы МОSFET нашли широкое применение в маломощных устройствах (несколько кВт) и не используются в установках большой мощности. Однако, они применяются совместно с усовершенствованными GTO, как будет объяснено в Разделах  №8 для MTO и Разделах №9 для  ETO; по этой причине данный параграф посвящен краткому описанию МОSFET.

МОSFET может быть выполнен на базе pnp или npn структуры, на Рис.6 показана только npn структура. Прибор выполнен с диэлектрическим слоем оксида кремния (SiO), который осуществляет соединение между металлическим контактом затвора, n+ и p переходами. Основным преимуществом затвора МОS является применения напряжения, вместо тока, относительно источника для полного или частичного запирания  устройства путем создания пространственного заряда вокруг небольшой зоны затвора. При приложении к затвору достаточного положительного напряжение относительно эмиттера, под действием этого электрического поля осуществляется движение электронов из n+ слоя в p. Таким образом, открывается ближайший к  затвору канал, который, в свою очередь, обеспечивает протекание тока от стока (коллектора) к источнику (эмиттеру).

На стороне стока в МОSFET вводиться большое количество добавок для создания n+ буфера ниже слоя проводимость дрейфа n-. В соответствии с изложенным в Разделе №4, в диодах этот буфер сдерживает расширение  обедненного слоя для предотвращения его соприкосновения с электродом, выравнивает напряжение поперек  n- слоя, а также способствует уменьшению падения напряжения в режиме проводимости. Наличие буферного слоя характеризует прибор как асимметричный с довольно низким обратным напряжением.

Для затвора транзистора МОSFET характерно маленькое потребление энергии, большая скорость коммутации и маленькие коммутационные потери.  К сожалению, МОSFET обладают высоким сопротивлением в режиме проводимости в прямом направлении, а следовательно, и высокими постоянными потерями, что делает невозможным их использование в силовых установках, но они нашли широкое применение в качестве усилительных устройств затворов.

Транзисторы МОSFET имеют вольтамперные характеристики,  аналогичные показанным на Рис.4; однако, ток базы заменен напряжением затвора.

Рис.6.  МОSFET: a -условное обозначение МОSFET, b- структура MOSFET.

 

6. ТИРИСТОР (без возможности управления моментом выключения)

 

Тиристором называется трехслойное устройства с тремя р-n переходами (Рис.7),  условное обозначение и структура которого показаны на Рис.7 (a) и Рис.7 (b). Тиристор – это коммутационный прибор, способный пропускать ток в одном направлении. Включенный  подачей отпирающего импульса, он переходит в проводящее состояние с весьма малым прямым падением напряжения  (от 1,5 до 3 В) при номинальном токе. В устройстве не предусмотрена возможность управления моментом отключения тока, таким образом, оно выключается только при естественном переходе через нуль тока, обусловленного процессами во внешней цепи.

Как ранее упоминалось, тиристор является незаменимым устройством в силовой электронике. Во многих случаях возможность управления моментом выключения не является необходимой. Обычные тиристоры имеют более высокие номинальные значения напряжения и тока, характеризуются более простой схемой управления, меньшими потерями; их стоимость составляет менее  половины по сравнению с приборами, выполненными с возможностью управления моментом выключения. Поэтому, решение в пользу более дорогого прибора с возможностью управления моментом выключения с  более высокими  потерями принимается на основании  решающих преимуществ,  что может иметь место именно для устройств  FACTS, что будет пояснено ниже.

Как показано на Рис.7 (с,d), тиристор эквивалентен объединению двух транзисторов типа  pnp и npn. При подаче положительного сигнала включения на p затвор верхнего npnтранзистора относительно n+ эмиттера (катод на Рис.7 (d)), прибор переходит в проводящее состояние. Ток через npn транзистор становится отпирающим фактором для затвора pnpтранзистора, как показано стрелками, способствуя и его переходу в проводящее состояние. В свою очередь ток через pnp транзистор, становится отпирающим фактором для затвора npnтранзистора, обеспечивает регенеративный эффект устойчивой проводимости с низким падением напряжения в прямом направлении при протекании электрического тока, по существу ограниченного внешней цепью. Важно отметить, что  когда тиристор переходит в  проводящее состояние, происходит насыщение внутренних p и n слоев  электронами и дырками, и работа устройства соответствует  короткозамкнутой цепи в прямом направлении. Таким образом, тиристор в целом ведет себя подобно устройству с одним pn с переходом (как диод).  Т.е. падение напряжения в режиме проводимости  в прямом направлении соответствует только одному переходу (при фактическом наличии трех), что  сравнимо с прибором с двумя  переходамиMOSFET и IGBT.

Из диаграммы очевидно, что  n база нижнего транзистора,  также может использоваться для включения, однако в этом случае требуется больший ток базы, поэтому в тиристорах в качестве затвора для включения  используется p база.

Рис. 7.  Тиристор: (a) условное обозначение тиристора, (b) структура тиристора, (c) двух –транзисторная структура , (d) эквивалентная схема тиристора.

 

При переходе тока через нуль (обусловленного внешней цепью), в центре области pn тиристора остается избыточное количество электронов и дырок, удаление или рекомбинация которых необходимы  для  восстановления его готовности блокирования напряжения, когда оно снова станет положительным.  В цепях, выполненных на базе тиристоров, удаление этого накопленного заряда осуществляется  незамедлительно после приложения отрицательного напряжения к прибору после перехода тока через нуль, в дополнение к более медленному процессу рекомбинации носителей заряда, обусловленного тепловым равновесием.  Таким образом, время выключения, которое может составлять от нескольких до нескольких десятков микросекунд, зависит от приложенного обратного напряжения после перехода тока через нуль, и должно тщательно учитываться в зависимости от  особенностей применения. Время выключения должно быть достаточным для последующего безопасного приложения положительного напряжения.

В случае большой пластины тиристора, затвор выполняется со структурой, распространяющейся по всей катодной поверхности, как показано на фото Рис.8.  Кроме того, для уменьшения необходимого импульса тока затвора применяются  несколько усилительных каскадов, выполненных в виде концентрических окружностей в центре. Это является существенным для быстрого распространения тока включения по всему прибору.  Это обеспечивается посредствам применения ряда различных структур затвора; одна из таких структур показана  на Рис.8.  Требуемая структура выполняется с помощью трафаретов, фотолитографии, травления, окисной изоляции, и т.д.,  начиная с обработки слоя с n- примесьюоднокристаллической пластины.

Быстрое распространение тока при включении по всей пластине является важной характеристикой, особенно для того, чтобы гарантировать протекание больших аварийных токов  в течение небольших промежутков времени, также как и для уменьшения потерь проводимости.

Целесообразно ввести в цепь управления дополнительный высоковольтный внешний тиристор с очень маленьким  током, для того, чтобы  увеличить усиление  и уменьшить мощность, прикладываемую к  затвору силового тиристора. Такое устройство было бы недорогим из-за его маленького номинального тока.

Включение тиристора может быть также осуществлено при подаче в область затвора электромагнитной волны (света) с соответствующим спектром.

Тиристор с прямым световым включением, позволяет осуществлять включение тиристора независимо от схем управления через волоконный световод. В качестве альтернативы можно рассматривать  внешний управляемый тиристор (упомянутый выше), который может быть выполнен как тиристор с световым включением, осуществляющий включение основного тиристора, который является электрически включаемым.

Приложение положительного анодного  напряжения  с высоким значением нарастания напряжения   (du/dt) может также включить прибор. Это объясняется емкостной связью катода и затвора, а большое значение нарастания напряжения  dv/dt вызывает  протекание достаточного тока для включения  прибора. Этот вид включения тиристора является небезопасным, так как такое включение может происходить в «слабой точке» области проводимости и распространяться медленно, что может вызвать  повреждение прибора. Опасное включение может также произойти, если при слишком большом прикладываемом напряжении в направлении проводимости, таким образом, обеспечивается появление  носителей заряда в «слабой точке»посредствам ускорения внутренних носителей заряда.  Это также предполагает возможность преднамеренной разработки устройства со «слабой точкой», т.е. безопасное включение может быть предусмотрено конструкцией прибора. Такие устройства с системой самозащиты и избирательным включением были использованы в недавно выполненных проектах ППТ.

Другим важным аспектом является то, что при подаче импульса включения  между анодом и катодом должно иметься большое напряжение, или высокая скорость его нарастания, чтобы вызвать быстрое включение. Недостаточное напряжение способствует мягкому включению прибора с медленным уменьшением  падения напряжения на приборе при увеличении тока. Данный способ включения приводит к высоким коммутационным потерям  в некоторой области прибора и к его возможным повреждениям.  В зависимости от применения, прибор должен проектироваться для указанного минимального напряжения включения с блокированием импульса включения в случае приложения несоответствующего напряжения в прямом направлении.

При высоких температурах, тиристор имеет отрицательный температурный коэффициент. Это выполнено для того, чтобы гарантировать однородное внутреннее включение и выключение устройства. Тиристор является высоковольтным прибором  с большим количеством внутренних носителей заряда и носителей, обусловленных добавлением примесей. При увеличении температуры увеличивается число тепловых носителей, что приводит  к снижению падения напряжения  в прямом направлении.

При переходе тиристора во включенное состояние необходимо обеспечить минимальный ток от анода  к катоду для поддержания прибора во включенном состоянии. Этот минимальный ток обычно составляет несколько процентов от  номинального тока. В цепях управления предусмотрена возможность подачи повторного импульса включения, если это необходимо.

Отметим, что вообще тиристоры имеют большую перегрузочную способность. Они выдерживают двукратную перегрузку по току  в  течение нескольких секунд,  десятикратную в течение нескольких периодов, и 50-кратный ток короткого замыкания в течение одного периода.

 

Рис.8.  Тиристор с пластиной  диаметром 125 мм, с номинальными параметрами  5 кВ и 5000 A.  Затвор выполнен в виде спирали с дополнительным усилительным прибором в центре. Прибор имеет уникальную легкую многослойную кремниевую конструкцию (LSS) с соединительной инертной кремниевой пластиной. Импульс управления прикладывается к двум зажимам между затвором и катодом. (С разрешения корпорации энергетических кремниевых устройств SPCO.)

 

7. ТИРИСТОР С ВОЗМОЖНОСТЬЮ УПРАВЛЕНИЯ МОМЕНТОМ ВЫКЛЮЧЕНИЯ  (GATE TURN-OFF)

                             

Тиристор с возможностью управления  моментом выключения  (GTO – от английского термина Gate Turn Off) в основном аналогичен обычному тиристору и по существу большинство аспектов, обсужденных выше в Разделе №6, относятся  также и к GTO. GTO-тиристор (Рис. 9) подобно обычному тиристору, является   включаемым прибором, но также обеспечивает и выключение. Материал, изложенный в данном разделе, относится к обычному GTO-тиристору, без последних дополнений, используемых в приборах под другими сокращенными обозначениями, которые рассмотрены ниже.

Эквивалентная схема GTO-тиристора, Рис.9 (c), аналогична эквивалентной схеме тиристора на Рис.7 (c) , за исключением того, что добавлена возможность выключения между затвором и катодом параллельно  затвору включения (что показано  только стрелками на эквивалентной схеме). При подаче большого импульса тока в направлении от катода к затвору, происходит перемещение значительного количество носители заряда от катода, то есть, от эмиттера верхнего pnp транзистора, и таким образом, npn транзистор  не будет принимать участия в процессе регенерации. Поскольку верхний транзистор переходит  в выключенное состояние, нижний транзистор остается с открытым затвором, таким образом, прибор возвращается в непроводящее состояние. Однако, необходимый ток затвора для реализации выключения является весьма большим.  Принимая во внимание, что импульс тока, необходимый для включения, может составлять 3-5 %, то есть, порядка  30 A, в течение 10 мксек для  устройства с номинальным током 1000А, в то время как ток,  необходимый для выключения устройства, составляет 30-50 %, то есть, 300А или больше в течение 20-50 мксек. Напряжение,  необходимое для управления большим импульсом тока, относительно невелико (приблизительно 10-20 В),  и поскольку длительность импульса составляет  20-50 мксек, энергия, необходимая для выключения прибора, является не очень большой величиной. Все же GTO  характеризуется достаточно большими потерями, поэтому экономическая целесообразность его применения обусловлена величиной потерь и  требуемым охлаждением, с учетом количества вентилей и их устройств выключения в преобразователе. Необходимая энергия для выключения GTO в 10 - 20 раз больше энергии, необходимой для включения, а  энергия для включения GTO в 10 - 20 раз больше энергии включения  тиристора. Стоимость и размер цепей выключения GTO сопоставимы со стоимостью самого прибора.

Другое соображение состоит в том, что процесс выключения должен осуществляться равномерно по всему прибору. Принимая во внимание, что тиристор имеет один катод с одиночной структурой затвора, которую распространяют по прибору, для успешного отключения  GTO требуется разделение катода на несколько тысяч участков (островков) с общей линией затвора, которая окружает весь катод и его участки (см. Рис. 10). Таким образом, GTO состоит из большого количества катодов тиристора с общим затвором, областью проводимости (дрейфовой областью), и анодом. Учитывая сложную структуру, современные GTO не имеет встроенных схем усиления. Следовательно, полная возможная для использования в качестве катода область уменьшилась примерно приблизительно на 50% по сравнению с тиристором. Поэтому падение напряжения GTO в прямом направлении приблизительно на 50 % больше, чем у тиристоров, но, однако, на 50% ниже, чем у транзистора (IGBT) такой же мощности. Технологический процесс производства GTO является аналогичным процессу производства тиристоров, хотя вследствие сложной структуры катода, необходимы  большие требования к чистоте производственных помещений, а стоимость GTO  может быть вдвое больше стоимости тиристора с аналогичными характеристиками. Что касается тиристоров конструкции GTO, в них осуществлен компромисс таких параметров как напряжение, ток, di/dtdu/dt, время коммутации, потери проводимости, коммутационные потери, и т.д.

GTO широко используются в преобразователях, выполненных на базе источника напряжения,  в которых применено встречно-параллельное включение с каждым GTO-тиристоромдиодов, характеризующихся быстрым восстановлением,  что в свою очередь означает, что в GTO нет необходимости предусматривать возможность устойчивости к обратному напряжению. Что также обеспечивает оптимизацию других параметров, особенно падения напряжения и применения более высоких номинальных значений тока и напряжения. Оптимизация параметров достигается с помощью так называемого буферного слоя, т.е n+ слоя с большим количеством примесей на границе с n- слоем. Такие GTO называются асимметричными.

Так же как и у тиристоров, непрерывный длительно допустимый эксплуатационный термический предел  pn перехода составляет 100°С, после принятия в расчет допущений относительно требований для протекания тока замыкания. Подобно тиристору, GTO способен  выдерживать кратковременную перегрузку по току (10-кратную в течение одного периода). Механизмы возникновения неисправностей аналогичны, поэтому необходима соответствующая форма краев пластин для уменьшения перенапряжений и пассивация, с целью избежанияперекрытий  вблизи граней.

В тиристорах, поскольку переход тока через нуль вызывается  внешней сетью, напряжение на приборе после этого автоматически и немедленно становится отрицательным.  Напротив, GTO  выключается в то время, когда к контуру все еще приложено напряжение в  прямом  направлении. Поэтому для успешного выключения необходимо уменьшить скорость нарастания прямого напряжения с помощью демпфирующих цепей.

В GTO, с анодной стороны pn- перехода введено небольшое количество примесей с целью поддержания почти всего запирающего напряжения,  по существу, на nслое.  С другой стороны, в катодную часть pn перехода добавлено большое количество примесей с обеих сторон, для того, чтобы напряжение включения было приблизительно 20 В.

Рис.9. Тиристор с возможностью управления моментом выключения (GTO): a- условное обозначение GTO-тиристора, b- структура GTO-тиристора, c- эквивалентная схема GTO-тиристора.

Рис.10.  Пластина GTO-тиристора  диаметром 77 мм на номинальные параметры  4,5 кВ и 2000 A. Катодная структура состоит из большого числа  зубчатых островков, расположенных по окружности. Остальная поверхность является затвором.

 

7.1. Процессы включения и выключения

 

Кроме мощных цепей управления, GTO-тиристор характеризуются большими коммутационными потерями, что является важным при оценке процессов включения и выключения с учетом перенапряжений на приборе и потерь. На Рис.11 представлены упрощенные  характеристики процессов выключения и включения. Для включения устройства, между затвором и катодом подается импульс тока в течение 10 мксек, величина которого составляет около 5% тока нагрузки с большой скоростью нарастания, ограниченной в значительной степени индуктивностью контура затвор-катод. Однако, в цепи имеется задержка на несколько микросекунд прежде, чем анодно-катодный ток начинает возрастать, а напряжение понижаться.Величина производной тока ограничена параметрами цепи, так как для безопасного включения прибора требуется равномерное включение всех катодных островков. Также, учитывая топологию цепи преобразователей напряжения, выполненных на базе источника напряжения (раздел П3), включение GTO сопровождается выключением встречно - параллельного диода, подключенного к другому вентилю той же самой фазы. Следовательно,  GTO-тиристор включает ток главной цепи, а также пропускает большой обратный ток утечки  диода. В течение этого процесса происходит нарастание тока и медленное уменьшение  анодно-катодного напряжения в соответствии с распространением плазмы, до значения напряжения, соответствующеговключенному состоянию устройства.

После полного включения, необходимо поддерживать некоторый ток затвора приблизительно 0,5 % от номинала, чтобы исключить возможность его запирания; этот ток называется током величины удержания («заднее крыльцо»). Потери включения GTO являются результатом одновременного существования напряжения и тока, что усугубляется токовой перегрузкой обратным током диода, упомянутого выше.

Процесс выключения требует намного большего обратного импульса тока, значение которого составляет больше чем 30 % тока прибора, который переводит часть тока от катода к затвору. При приложении импульса выключения, наблюдается существенная временная задержка (называемая временем задержки), в катодной области, прежде чем ток начинает уменьшаться и происходит увеличение напряжения. Эта задержка приводит к существенному потреблению энергии цепями затвора. Уменьшение анодно-катодного тока сначала происходит быстро до некоторого небольшого  значения, а затем продолжает уменьшаться медленно, пока не произойдет рекомбинация носителей в pn области анодной части прибора. Потери, вызванные данным процессом, составляют значительную часть суммарных потерь выключения.

В течение выключения необходимо ограничивать скорость нарастания напряжения, чтобы гарантировать безопасность всех катодных островков.

Основным недостатком GTO по сравнению  с IGBT, описание которого будет представлено ниже, является большое потребление энергии на выключение.  GTO-тиристоры - приборы с большим временем выключения, более низким допустимым di/dt и du/dt, и поэтому, дорогостоящими цепями демпфирования включения и выключения, что в свою очередь увеличивает стоимость прибора и потери.  Из-за медленного выключения, прибор может быть использован в ШИМ-преобразователях с относительно низкой частотой (до нескольких сотен Гц) которой, однако, достаточно для мощных преобразователей. С другой стороны, GTO характеризуются более низким падением напряжения в прямом направлении и большими номинальными величинами, чем IGBT. GTO использовался в  устройствах FACTS мощностью несколько сотен MВт.

Большим преимуществом было бы, если бы прибор имел низкое падение напряжение во включенном состоянии (как у тиристора), так же как и малое потребление энергии на включение и быстрое выключение (как у IGBT). Фактически, на рынке существует ряд таких устройств, которые со временем могли бы заменить обычные GTO. Эти устройства, фактически, являются усовершенствованными GTO, которые совместили внедрение  концепции стандартного модульного оборудования (PEBB) и уменьшение потребления мощности цепями затворов, а также обеспечение быстрой коммутации. Основным является обеспечение быстрого выключения, которое по существу означает быструю передачу тока от катода к затвору верхнего транзистора. Эти требования были реализованы различными путями в усовершенствованных GTO-приборах. Последние включают MOS-тиристор с возможностью управления моментом выключения (MTO), в тиристоре с управляемым эмиттером (ETO), и в интегрированном тиристоре с управляемым затвором  (IGCT), краткое описание которого приведено ниже.

                                               а                                             b                                

Рис. 11. Процессы включения и выключения GTO-тиристора: a- включение и b- выключение.

 

8. MOS ТИРИСТОР С ВОЗМОЖНОСТЬЮ УПРАВЛЕНИЯ МОМЕНТОМ ВЫКЛЮЧЕНИЯ (MTO)

 

Компания SPCO разработала MTO-тиристор, который является комбинацией GTO и MOSFET, в данном тиристоре преодолены ограничения GTO относительно мощности затвора, демпфирующих цепей и ограничений  по du/dt. В отличие от IGBT (Раздел  №12), МОS структура не распространяется по полной поверхности прибора, а вместо этого элементарныеMOSFET расположены  вокруг GTO, чтобы устранить потребность GTO в больших импульсах тока выключения. По существу в устройстве сохранена структура GTO для использования ее преимуществ: большого напряжения (до 10кВ), большого тока (до 4000 A) и более низких потерь проводимости, чем в IGBT.  С помощью MOSFET и плотной сборки, удается минимизировать паразитные  индуктивности в цепи катод- затвор, MTO становятся существенно более эффективными, чем обычные GTO, т.к. в них требуется значительно меньшие мощности цепи управления, несмотря на уменьшение времени зарядки при выключении, что обеспечивает улучшение эксплуатационных характеристик и уменьшение системных затрат. Как и  прежде для GTO, необходимо двустороннее охлаждение, что позволяет выполнить технологическую сборку устройства более компактной для эффективного теплоотвода как от GTO.

На Рис.12 изображено условное обозначение, структурная и эквивалентная схемы MTO; на Рис.13 представлена его фотография. MTO представляет собой четырехслойное устройство с двумя затворами, один из которых управляет моментами включения, а другой выключения. У обоих затворов электроды непосредственно соединены с р слоями. Аналогично GTO,включение тиристора обеспечивается импульсом тока включения в течение 5-10мксек, который составляет 0,1 от номинального тока и последующим небольшим поддерживающим током. Импульс включения подается на верхний npn транзистор, который в свою очередь включает  нижний pnp, что приводит к устойчивому включению.

Выключение устройства выполняется посредствам приложения импульса напряжения приблизительно 15В к затворам  MOSFET, и, таким образом, е включенным транзисторам, чтозакорачивает контур между эмиттером и базой npn транзистора, что обеспечивает переход в  запертое состояние. В отличие от выше представленных рассуждений, выключение обычного GTO осуществляется переводом тока из контура  эмиттер - база верхнего npn транзистора большим импульсом отрицательной полярности, для предотвращения регенеративного процесса (проводимости). В  новом приборе одинаково важным является то, что его выключение  может быть произведено намного быстрее, (1-2 мксек вместо 20-30 мксек), и потери, связанные свременем зарядки будут почти устранены. Это также означает большое значение  du/dt,  меньшую емкость и устранение активного сопротивления демпфирующих цепей.

Малое время выключения также означает, что включение  в цепь MTO последовательно может осуществляться  без подбора характеристик приборов, так как фактически выключение всех приборов осуществляется одновременно, и каждый прибор пропускает свою долю тока. Так как MOSFET по существу включены параллельно катоду затвора GTO, то для быстрого выключения необходимы MOSFET с очень малым падением напряжения в прямом направлении. MOSFET являются маленькими, недорогими и производимыми в больших количествах приборами. Быстрое выключение MTO и других усовершенствованных типов GTO может по существу преодолеть недостатки GTO по сравнению с IGBT в отношении защиты от сверхтоков,  что будет показано в Разделе №11 на примере  IGBT.

Необходимо отметить, что продолжительная часть характеристики выключения, показанная в  конце процесса выключения  на Рис.11 является реальной и  характерной для применяемых в настоящее время приборов;  следующее включение прибора произойдет только после того, как остаточный заряд на стороне анода  рассеется  в результате процесса рекомбинации.  Это также применяется в других усовершенствованных тиристорных устройствах, описанных ниже,  кроме MCT. Однако, было бы более выгодно, если бы на анодной стороне имелся другой затвор, что позволило бы ускорить рассеяние заряда в анодной области. Такое устройство позволило бы значительно улучшить характеристики полупроводниковых приборов большой мощности. Данный подход был предложен SPCO, которая также предлагает монолитную конструкцию устройства,  в которой MOSFET- транзисторы внедрены в p слои GTO.

Рис.12. MOS-тиристор с возможностью управления моментом выключения (MTO) : a- условное обозначение MTO, b- структура MTO, c- эквивалентная схема MTO и d- уточненная эквивалентная схема MTO.

Рис.13. MOS-тиристор с управляемым затвором диаметром 50 мм (MTO ™), выполненный на номинальные характеристики 4,5кВ и 500 A. Полностью собранный прибор показан со снятой крышкой. Внутри прибора установлен  GTO- тиристор, такой же, как на рисунке П2.10, но окружности которого расположены низковольтные MOSFET транзисторы для затвора выключения. Это кольцо частично разрезано, чтобы показать MOSFET. Затвор включения - стандартный для GTO. (С разрешения Корпорации энергетических кремниевых устройств  (SРCO). MTO  -  это торговая марка SPCO.)

 

9. ЗАПИРАЕМЫЙ  ТИРИСТОР С УПРАВЛЯЕМЫМ ЭМИТТЕРОМ (ETO)

 

Подобно MTO, ETO представляет собой другую эксплуатационную разновидность устройства, сочетающего в себе свойства тиристора и транзистора, то есть, GTO и MOSFET.  ETO был изобретен в Центре энергетической электроники в Виржинии при сотрудничестве с SPCO. Условное обозначение ETO и его эквивалентная схема представлены на Рис.14. Как показано на рисунке, MOSFET T1 (N) соединен последовательно c GTO, а  второй MOSFET T2 (P) соединен между этим MOSFET и затвором GTO. Фактически T1 состоит из нескольких N-MOSFET транзисторов, а T2  из несколько P- MOSFET, установленных вокруг GTO, с целью уменьшения индуктивности между транзисторами и катодным затвором GTO. N- и P-транзисторы и GTO являются устройствами массового производства.

Прибор ETO имеет два затвора: один затвор является затвором GTO и  используется для включения, а другой - затвором последовательного MOSFET и используется для выключения. Когда на N- MOSFET  транзистор подается выключающий сигнал напряжения, он выключается и передает весь ток от катода (n эмиттера верхнего npn транзистора GTO) к базе  через MOSFET T2, предотвращая, таким образом, регенеративное запирающее состояние и обеспечивая быстрое выключение. Важно заметить, что к MOSFET- транзисторам не прикладывается высокое напряжение, вне зависимости от того, насколько высоким является напряжение ETO. T2 соединен с его затвором, закороченным его стоком, и, следовательно,  напряжение на нем будет чуть выше, чем пороговое напряжение, и максимальное напряжение на T1 не может превышать напряжения T2.

        Преимущество последовательных MOSFET состоит в том, что передача тока от катода является полной и быстрой, обеспечивая тем самым одновременное выключение всех индивидуальных катодов. Недостатком последовательных MOSFET транзисторов является  то, что они должны пропускать полный ток GTO, что приводит к увеличению полного падения напряжения и соответствующих потерь. Однако, так как  эти MOSFET-транзисторы являются  низковольтными устройствами, добавочное падение напряжения невелико (примерно 0,3-0,5В), хотя им нельзя пренебрегать.

Таким образом, ETO это по существу GTO, который с помощью вспомогательных MOSFET увеличивает скорость коммутаций GTO и, соответственно, уменьшает потери, что приводит к значительному удешевлению  цепей управления затвором и демпфирующих цепей, что является большим недостатком  мощных высоковольтных  GTO.

Необходимо отметить, что продолжительная часть характеристики выключения, показанная в  конце процесса выключения  на Рис.11, является реальной и  характерной для применяемых в настоящее время приборов;  следующее включение прибора произойдет только после того, как остаточный заряд на стороне анода  рассеется  в результате процесса рекомбинации.

Рис.14.  Тиристор с управляемым эмиттером (ETO): а - условное обозначение ETO и b- эквивалентная схема ETO.

 

10. ИНТЕГРИРОВАННЫЙ ТИРИСТОР С УПРАВЛЯЕМЫМ ЗАТВОРОМ (GCT и IGCT)

Тиристор с управляемым затвором  (GCT) является  интенсивно коммутируемым GTO,  выключение которого осуществляется с помощью очень короткого и большого импульса тока, величина которого равна полному номинальному току, при этом осуществляется распространение всего тока от катода к затвору за 1 мсек, для обеспечения быстрого выключения. Структура и эквивалентная схема GCT является такой же, как и GTO, показанного на Рис.9. IGCT - это прибор с  дополнительными свойствам GCT, включая многослойную печатную цепь затвора, поставляемую в комплекте с основным прибором,  который  также может включать в себя обратный диод, структура IGCT  показана на Рис.15, а  фотография - на Рис.16.

Для того чтобы применять быстро растущий и большой ток затвора, в конструкции GCT (IGCT) предприняты  специальные меры для того, чтобы уменьшить индуктивность цепей затвора (контур, состоящий из  цепей управления затвором – затвора - катода) до минимального значения, что также требуется и для MTO и ETO. Основным существенным отличием GCT (IGCT) является быстродействие управляющих цепей затвора, что обеспечивается коаксиальной передачей тока на катодный затвор и многослойными цепями управления  затвором, которые дают возможность возрастать току затвора со скоростью  4 кА/мксек при  напряжении затвор - катод 20 В. За 1 мксек осуществляется полное включение верхнего транзистора GTO, а нижний pnp транзистор остается с открытой базой  выключения. Так как импульс тока является кратковременным, энергия  цепей управления затвора значительно уменьшена. Также,  дляизбежания  перерегулирования затвора, расход энергии цепей управления минимизирован. Потребление энергии  цепями затвора  уменьшено в 5 раз  по сравнению с обычным GTO.  Как и в обычном GTO,  MTO и ETO, буферный слой находится на анодной стороне n-слоя, который уменьшает обычные потери  проводимости и делает устройство асимметричным.

Анодный р-слой выполняется тонким с небольшим количеством примесей, что обеспечивает  более быстрое перемещение зарядов с анодной стороны  в процессе выключения. В структуру IGCT может также входить обратный диод, который представлен n+n-p переходом, находящимся в правой части структурной схемы Рис.15. Как ранее упоминалось, обратный диод необходим в преобразователях, выполненных на базе источника напряжения. Буферный n слой  выравнивает напряжение n- слоя, толщина n- слоя уменьшена на  40 %, для того чтобы обеспечивать  конструктивное введение диода с падением напряжением в прямом направление в режиме проводимости, сопоставимым с внешне подключенным диодом.  Естественно, объединение диодов означает соответствующее распределение кремниевой активной поверхности, которая в свою очередь уменьшает область для GTO на данной пластине.

Как следует из описания MTO, ETO и GCT, основные возможности GTO обусловлены  вытеснением тока между катодом и базой верхнего транзистора настолько быстро, насколько это возможно. Уменьшенная величина индуктивности  цепей затвора и катодного контура является свойством всех усовершенствованных типов GTO, описание которых приведено выше и также применяется в обычных GTO. Для всех них характерно  большое значение dv/dt, однородный и кратковременный ток выключения, что способствует увеличению отключаемого тока до максимально возможного. Это, в свою очередь приводит к уменьшению емкости демпфирующих цепей без резистора, что способствует более простому последовательному соединению GTO, и включению с низкими затратами энергии, такими же как и в обычном GTO. В соответствии с  изложенным в Разделе №2, эти приборы и MCT (описанный ниже)  по существу  представляют главное в  концепции стандартного модульного оборудования (PEBB). Объединение  цепей управления обеспечивает главное преимущество усовершенствованных GTO, которые заменят обычные GTO, по крайней мере при применении в таких устройствах, характеристики которых должны быть значительно улучшены, например, -  в устройствах  FACTS.

Такое усовершенствование идеологии GTO представляет собой основное достижение, основанное  на применении концепции PEBB, благодаря которой исключены паразитные индуктивности и емкости    цепей управления  и шинных соединений, которые имеют значительное влияние на величину полных потерь, демпфирующих цепей и всего вспомогательного оборудования.

Рис.15.  Структура IGCT  с управляемым затвором и обратным диодом.

Рис.16.  Интегрированный тиристор с управляемым затвором (IGCT), который состоит из тиристорного устройства с коммутируемым затвором (GCT)  и  цепей затвора с малой индуктивностью. На рисунке показаны также две подложки различной конструкции.  Нижняя  пластина является новой разработкой GTO, а верхняя подложка характерна для GTO с обратным диодом, который является частью устройства.

 

11. БИПОЛЯРНЫЙ ТРАНЗИСТОР С ИЗОЛИРОВАННЫМ ЗАТВОРОМ (IGBT).

 

Биполярный транзистор с изолированным затвором (IGBT) является современным энергетическим транзистором.  Он работает  как транзистор, и предназначен для эксплуатации при больших напряжениях и токах, а также характеризуется небольшим падением напряжения  в состоянии проводимости.

IGBT - это прибор, который отчасти является тиристором, но разработан таким образом, что он не переходит  в состояние полной проводимости  (что эквивалентно падению напряжения на одном переходе), вместо этого IGBT в отпертом состоянии работает как транзистор. Кроме этого, прибор имеет интегрированную МОS структуру с изолированным затвором, подобно МОSFET. Поперечный разрез его структуры и эквивалентная схема показаны на Рис.17. Подобно тиристорам и GTO, прибор имеет двух - транзисторную структуру. Но включение и выключение осуществляется структурой MOSFET через ее npn транзистор, вместо np эммитерного затвора верхнего npn транзистора. При включении осуществляется протекание тока через базу к  эмиттеру npn транзистора, как в тиристоре, однако его недостаточно для образования лавины, которая способствовало бы к переходу в состояние полной проводимости.  Как показано на Рис.17, соединение база – эмиттер шунтировано активным сопротивлением, которое встроено в структуру устройства. Через это сопротивление протекает часть катодного тока.

На представленной структуре прибора  верхний  n+  слой MOS является источником  n- носителей заряда, p-слой является базой, n--слой является дрейфовой областью, нижний p+ -буферный слой, и наконец p+ - слой является подложкой.  Подобно МОSFET, для включения прибора необходимо наличие положительной полярности затвора относительно эмиттера, тогда осуществляется движение n носителей заряда в p канал около области затвора, которые прямо смещаются к базе npn-транзистора, который таким образом включается. Включение IGBT осуществляется только приложением положительного напряжения к базе, т.е. при открытии канала для n носителей заряда, а выключение при снятии напряжения с базы, т.е для закрытияканала, что приводит  к очень простому контуру управления.  В принципе, это может быть достигнуто и в MTOS и ETOS, если бы МОSFET были также добавлены и для включения.

Учитывая комплексную технологию МОS  на полной поверхности устройства, IGBT  выполняются размером приблизительно 1 см2.  Для создания  устройств большой мощности используется параллельное соединение нескольких  IGBT,  объединенных общим корпусом,  имеющих вид  одиночного устройства.  

Преимуществом IGBT является быстрое включение и выключение, так как оно аналогично прибору с основными носителями заряда (электронами).  Поэтому оно может использоваться в преобразователях широтно-импульсной модуляции (PWM), работающих на высокой частоте. С другой стороны, будучи транзисторным устройством,   IGBT характеризуется большим падением напряжения в прямом направлении по сравнению с приборами тиристорного типа, таких как GTO. Однако IGBT является основным прибором, используемым  в промышленных целях, и достиг необходимых параметров для применения в устройствах с  номинальной мощностью 10 МВт  или более.

 Транзисторные приборы, такие как MOSFET и IGBT, потенциально имеют возможность ограничивать  предельный ток путем управления напряжением затвора. В случае такоготокоограничения, потери в устройстве очень высоки, и  при использовании устройства в системах большой мощности токоограничивающее воздействие может осуществляться только в течение очень коротких периодов, т.е.  нескольких микросекунд. Однако, этого времени может быть достаточно для срабатывания других систем защиты для безопасного выключения устройств. Эта особенность чрезвычайно важна в преобразователях, выполненных на базе источников напряжения, в которых возрастание тока замыкания до больших значений осуществляется очень быстро из-за наличия мощного конденсатора постоянного тока в преобразователе. С другой стороны, при быстродействующем управлении, сочетающемся с возможностью быстрого выключения в усовершенствованных GTO, эффективное гашение тока может быть достигнуто в пределах 2-3 микросекунд. Этот метод также позволяет избежать в этих приборах мощного выделения энергии и в состоянии уменьшить его используемую мощность. Время выключения обычного GTO, как правило, слишком велико для быстродействующего защитного отключения. В сетях малой мощности устройства IGBT постепенно заменяет обычные GTO, по мере того, как параметры приборов, состоящих из параллельно соединенных IGBT, повышаются.  Это происходит потому, что обычные GTO имеют ряд серьезных недостатков, а именно большое энергопотребление цепей затвора, медленную коммутацию и высокие коммутационные потери. Развитие GTO в MTO, ETO и IGCT/GCT показало, что они являются результатом разрешения предыдущих не устраненных проблем, связанных с построением цепей затвора и паразитными индуктивностями  в контуре затвор - катод.

IGBT имеет ряд собственных ограничений, включая: большое падение напряжения в прямом направлении, сложности с обеспечением двустороннего охлаждения, свойствами множественных MOS, размещенных на пластинах, что ограничивает возможности  увеличения запираемого напряжения. Для производства IGBT необходимы  более чистые производственные помещения.

Главными преимуществами IGBT, используемыми в устройствах большой мощности, являются небольшие коммутационные потери, быстрая коммутация и возможностьтокоограничения. Однако, с усовершенствованными GTO и MCT (рассматриватся в следующем разделе), существует перспектива их использования в разнообразных устройствах  FACTS.

С другой стороны, будущий результат часто зависит от конъюнктуры рынка и объема продаж, что в свою очередь, способствует увеличению производства IGBT для систем большой мощности.

Рис.17. Биполярный транзистор с изолированным затвором (IGBT): a - условное обозначение IGBT, b -  эквивалентная схема IGBT и c- структура IGBT.

                                                                           

12. ТИРИСТОР, УПРАВЛЯЕМЫЙ МОS-СТРУКТУРОЙ   (MCT)

 

Управляемый МОS-структурой  тиристор (MCT) содержит структуры, аналогичные MOSFET, в обоих устройствах включения и выключения.

На Рис.18 показан MCT n-типа.  Эквивалентная схема для n-MCT,  предназначенная для включения, состоит из n-типа  МОSFET (обозначенного как n-FET), включенного вдоль катодной стороны npn транзистора, аналогично IGBT. Другой  р-тип МОSFET (обозначенный как p-FET) включен вдоль катода затвора с катодной стороны npn транзистора и предназначен для выключения, аналогично MTO.

Включение n-FET происходит при приложении положительного напряжения к затвору относительно катода, при этом осуществляется протекание тока от анода к базе нижнего npnтранзистора, который включается и приводит к устойчивому включению тиристора. Как показано, то же самое напряжение затвора подается на базу p-FET, который гарантирует, что p-FETне участвует в операциях.

Когда напряжение затвора станет отрицательным, произойдет выключение n-FET и включение р-FET. Таким образом, р-FET шунтирует катод затвора, обеспечивая запирание тиристора.

МОS  структура распространена по всей поверхности прибора, обеспечивая быстрое включение и выключение с маленькими коммутационными потерями. Мощность/энергия, требуемая для включения и  выключения прибора  мала, так же как и время запаздывания (время зарядки). Кроме того, так как прибор является запираемым, он характеризуется незначительным падением напряжения во включенном состоянии, так же как тиристор. Процесс его производства по существу такой же, как и IGBT.

Основное преимущество  MCT, по сравнению с другими запираемыми тиристорами, состоит в том, что в данном случае распределенные затворы МОS для включения и выключения расположены очень близко к распределенным катодам, что способствует  быстрой коммутации и небольшим коммутационным потерям в тиристорном приборе. Поэтому MCT представляет почти полностью выключаемый тиристор с небольшими коммутационными потерями и потерями проводимости, а также является быстрым коммутационным прибором, необходимым для мощных усовершенствованных преобразователей с возможностью использования в  активных фильтрах.

Рис.18.  Тиристор, управляемый МОS-структурой  (MCT): (a) условное обозначение MCT, (b) эквивалентная схема MCT и (c) структура MCT.

Обновлено: 11.05.2017 19:41