Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной

Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.

Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas(латб анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу, и в работе De metodisfluxionum et serierum infinitarum (лат.Метод флюксий и бесконечные ряды) или Geometria analytica(лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn, а последовательность полиномов и в результате получал приближённое решение x.

Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работеAnalysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.

Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.

В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .

Рис.1. График изменение функции

Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α (). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла \alpha в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения .Точка пересечения касательной с осью Ox будет являться следующей точкой приближения  .  В соответствии с рассматриваемым методом расчет приближенного значения корня на i-итерации производится по формуле: 

Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.

Условием окончания итерационного процесса является выполнение следующего условия:

,

где  ˗ допустимая погрешность определения корня.

Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.

Математическое обоснование

Пусть дана вещественная функция , которая  определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень  рассматриваемой функции.

Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение  приводят к эквивалентному уравнению  при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .

Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции  должен соответствовать экстремуму функции .

Производная сжимающего отображения определяется в следующем виде:

Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при  необходимо обеспечить условие . В результате получим выражение для определения переменной :

С учетом этого сжимающая функция прием следующий вид:

Таким образом, алгоритм нахождения численного решения уравнения  сводится к итерационной процедуре вычисления:

Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной

1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число  ) и начальный шаг итерации (k=0).

2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:

3. Проверяем приближенное значение корня на предмет заданной точности, в случае: 

- если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.

- если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс  и перейти к п.2 рассматриваемого алгоритма.

Пример решения уравнений

по методу Ньютона для уравнения с одной переменной

В качестве примера, рассмотрим решение нелинейного уравнения   методом Ньютона для уравнения с одной переменной. Корень необходимо найти с точностью   в качестве первого приближения .

Вариант решения нелинейного уравнения в программном комплексе MathCADпредставлен на рисунке 3.

Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).

Рис.2. Результаты расчета по методу Ньютона для уравнения с одной переменной

Для обеспечения заданной точности  при поиске приближенного значения корня уравнения в диапазоне  необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .

Рис.3. Листинг программы в MathCad

Модификации метода Ньютона для уравнения с одной переменной

Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.

Упрощенный метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’(xn) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:

http://konspekta.net/studopediaorg/baza8/1675971458901.files/image3663.gif

Таким образом, на каждом шаге расчета строятся прямые, которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.

Модифицированный метод Ньютона 
Рис.4Модифицированный метод Ньютона

Разностный метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции  заменить разностным отношением (приближенным значением):

http://konspekta.net/studopediaorg/baza8/1675971458901.files/image3664.gif

В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:

 

Двух шаговый метод Ньютона

В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции  заменить разностным отношением (приближенным значением):

В результате приближенное значение корня функции f(x) будет определяться следующим выражением:

где

 

Метод секущих

Рис.5. Двух шаговый метод Ньютона

Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями  и . В методе необходимо задавать два начальных приближения  и . Скорость сходимости метода будет линейной.

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.