Неотъемлемой частью синхронных машин является система возбуждения. Система возбуждения предназначена для питания обмотки возбуждения генератора, автоматически регулируемым постоянным током.

Системой возбуждения (СВ) называется совокупность оборудования, аппаратов и устройств, объединённых соответствующими цепями, которая обеспечивает необходимое возбуждение генераторов и синхронных компенсаторов в нормальных и аварийных режимах, предусмотренных ГОСТ и техническими условиями. В систему возбуждения входят: возбудитель, автоматический регулятор возбуждения (АРВ), коммутационная аппаратура, измерительные приборы, средства защиты ротора от перенапряжений и защиты оборудования системы возбуждения от повреждений [п.5.2.36, ПУЭ].

Обобщенная схема соединения генератора, системы возбуждения и АРВ приведена на рис. 1.

Рис. 1. Обобщенная схема соединения генератора, системы возбуждения и АРВ

Напряжение на выходе системы возбуждения Uf  и ток возбуждения if  изменяются под действием сигнала, поступающего от АРВ. Требуемый вид этого сигнала зависит от технического исполнения системы возбуждения. В целом схема рис. 1 представляет собой замкнутую систему автоматического регулирования, управляемую на основе обработки по определенному алгоритму режимных параметров, получаемых от трансформаторов напряжения и тока.

Основной элемент системы возбуждения (СВ) – возбудитель, являющийся регулируемым источником постоянного тока. Он может быть выполнен в виде коллекторного генератора постоянного тока, генератора переменного тока с выпрямительным преобразователем или трансформатора с выпрямительным преобразователем. Применение генератора постоянного тока для возбуждения турбогенератора ограничено трудностями, связанными с работой коллектора при высокой скорости вращения. Поэтому на более мощных генераторах применяются возбудители с выпрямителями. Если источником переменного тока, питающим возбудитель, является генератор, выпрямитель может быть неуправляемым (диодным) или управляемым (тиристорным). В первом случае выпрямительный преобразователь проще и надежнее, во втором обеспечено более высокое быстродействие. Если выпрямительный преобразователь питается от трансформатора, он выполняется тиристорным.

Неотъемлемым элементом системы возбуждения является АРВ. Основными задачами АРВ являются поддержание заданного уровня напряжения на выводах генератора (на шинах высокого напряжения электростанций) с заданным статизмом (1-5%). Также с помощью АРВ обеспечивается повышение устойчивости параллельной работы генераторов при нарушениях нормального режима работы энергосистемы. Наиболее распространённым видом АРВ является АРВ сильного действия (АРВ-СД), в котором содержатся каналы демпфирования по производным напряжения и частоты статора и тока ротора.

Помимо перечисленных устройств, в систему возбуждения входят автомат гашения поля (АГП) и устройство начального возбуждения.

Классификация систем возбуждения.

Системы возбуждения генераторов и СК классифицируются по разным признакам.

П.1. Системы возбуждения по способу получения питания разделяют на системы независимого возбуждения (СНВ) и системы самовозбуждения (ССВ) и комбинированные.

Независимость оценивается относительно цепи якоря возбуждаемой машины. В схеме СНВ источником является вспомогательный генератор (ВГ), сочленённый с валом возбуждаемой машины (рис. 2г, д, е). Основным преимуществом этого способа является независимость возбуждения от режима работы электрической сети и, как следствие, большая надёжность. Недостатки такой системы определяются недостатками самого возбудителя: невысокая скорость нарастания возбуждения, сниженная надёжность работы коллекторного узла при высоких частотах вращения. В схемах ССВ источниками являются выпрямительные трансформаторы ВТ и ПТ, подключенные непосредственно к цепи якоря генератора (рис. 1а, б). Такие системы возбуждения менее надёжны, чем СНВ. Короткие замыкания в сети, сопровождающиеся понижением напряжения, нарушают нормальную работу системы возбуждения, которая именно в этих режимах должна обеспечивать форсировку тока в обмотке ротора генератора. В комбинированных системах главный преобразователь – диодный выпрямитель питается от ВГ, а тиристорный преобразователь (ТП) питается через выпрямительный трансформатор от выводов генератора (рис. 1в). Примеры каждого из видов показаны на рис. 2.

Рис. 2. Структурные схемы систем возбуждения

а – статическая тиристорная система параллельного самовозбуждения,

б – статическая система смешанного возбуждения,

в – комбинированная одномашинная диодная система возбуждения (как правило, бесщёточная),

г – одномашинная система независимого тиристорного возбуждения,

д – одномашинная диодная система независимого возбуждения (высокочастотная),

е – двухмашинная диодная система независимого возбуждения (высокочастотная или бесщёточная)

П.2. Системы возбуждения по типу вентилей главного преобразователя разделяют на диодные и тиристорные.

В тиристорных системах АРВ воздействует на управление тиристорными преобразователями, в диодных – на управление возбуждением ВГ.

П.3. Системы возбуждения также разделяют на статические, бесщёточные (вращающиеся) и комбинированные.

Статические СВ – это системы, содержащие только неподвижные элементы. Статическими являются только ССВ. У бесщёточных СВ вращаются вентильный преобразователь и якорь обращённого ВГ, и поэтому связь с обмоткой возбуждения генератора осуществляется жёстким соединением без контактных колец и щёток. У комбинированных СВ статическим является вентильный преобразователь, питаемый от ВГ традиционного исполнения.

Помимо сказанного, выделяют параллельные и комбинированные ССВ. Первые (рис. 2а) содержат только один выпрямительный трансформатор, подключаемый к зажимам генератора. Вторые имеют еще и последовательный трансформатор (ПТ), включаемый последовательно в цепь статора (рис. 2б).

У бесщёточных СВ генератор и преобразователь выполняются трёхфазными и многофазными, у комбинированных СНВ вспомогательный генератор выполняется синхронным или индукторным (высокочастотным).

Независимые СВ выполняются одномашинными (рис. 2г, д) и двухмашинными (рис. 2е). У одномашинных СВ ВГ имеет систему самовозбуждения, у двухмашинных – на основе подвозбудителя, выполняемого в виде генератора с постоянными магнитами или индукторного генератора.

Кроме этого, тиристорные СВ могут иметь одногрупповой или двухгрупповой ТП. У последних одна группа, рабочая, рассчитывается на уровни напряжения нормальных режимов, а вторая, форсировочная, имеет повышенное напряжение питания, обеспечивающее форсировку возбуждения.

Общие требования к системам возбуждения.

В нормальном режиме источник возбуждения должен обеспечивать на кольцах ротора номинальное напряжение и номинальный ток возбуждения, при которых генератор выдаёт номинальную мощность. В целях создания запаса по нагреву номинальные значения напряжения и тока системы возбуждения должны превышать номинальные значения напряжения и тока обмотки возбуждения генератора или компенсатора не менее чем 10%.

В аварийном режиме к источнику возбуждения предъявляются требования в отношении быстродействия и предела изменения напряжения на кольцах ротора. С этих позиций система возбуждения оценивается двумя величинами: скоростью нарастания напряжения и кратностью максимального значения напряжения по отношению к номинальному.

Рис. 3. Изменение напряжения возбуждения при форсировке

В соответствии с изложенным количественные характеристики систем возбуждения определяются следующим образом.

П.1.Кратность форсировки возбуждения по напряжению – это потолочное установившееся напряжение системы возбуждения, выраженное в долях номинального напряжения возбуждения

                                       ,

где   – потолочное напряжение СВ,   – номинальное напряжение СВ.

Для современных систем возбуждения кратность форсировки возбуждения по напряжению составляет

П.2.Скорость изменения напряжения возбуждения – это скорость нарастания или снижения напряжения системы возбуждения или возбудителя при необходимости изменения этого напряжения, выраженная в вольтах в секунду или в относительных единицах в секунду по отношению к номинальному напряжению возбуждения синхронной машины.

  , о.е./с.

где – разница между потолочным и номинальным значением напряжения возбуждения, – номинальное напряжение возбуждения, t1 – время, за которое напряжение возрастает от номинального значения до значения 

Так как скорость изменения напряжения возбуждения определяется по точке эквивалентного экспоненциального процесса, то представляется возможным заменить в приближенных исследованиях (!) систему возбуждения инерционным звеном первого порядка с передаточной функцией

                                      ,

где  – коэффициент усиления звена, замещающего систему возбуждения, – постоянная времени звена.

Различные системы возбуждения имеют ориентировочно следующие постоянные времени:

Тиристорные= 0.02-0.04 с.

Бесщеточная  = 0.1-0.15 с.

Высокочастотная  = 0.35 с.

Электромашинная с генератором постоянного тока = 0.3-0.5 с.

Номинальная скорость нарастания напряжения возбуждения принимается равной 2 относительных единиц в секунду. Большинство современных вентильных СВ имеет скорость нарастания напряжения значительно большую, чем представленная.

Добавить комментарий

Статистика сайта:
Яндекс.Метрика